Sneiby County Schools Science Vision

Shelby County Schools' vision of science education is to ensure that from early childhood to the end of the 12th grade, all students have heightened curiosity and an increased wonder of science; possess sufficient knowledge of science and engineering to engage in discussions; are able to learn and apply scientific and technological information in their everyday lives; and have the skills such as critical thinking, problem solving, and communication to enter careers of their choice, while having access to connections to science, engineering, and technology.

To achieve this, Shelby County Schools has employed The Tennessee Academic Standards for Science to craft meaningful curricula that is innovative and provide a myriad of learning opportunities that extend beyond mastery of basic scientific principles.

Introduction

In 2014, the Shelby County Schools Board of Education adopted a set of ambitious, yet attainable goals for school and student performance. The District is committed to these goals, as further described in our strategic plan, Destination 2025. In order to achieve these ambitious goals, we must collectively work to provide our students with high quality standards aligned instruction. The Tennessee Academic Standards for Science provide a common set of expectations for what students will know and be able to do at the end of each grade, can be located in the <u>Tennessee Science Standards Reference</u>. Tennessee Academic Standards for Science are rooted in the knowledge and skills that students need to succeed in post-secondary study or careers. While the academic standards establish desired learning outcomes, the curricula provides instructional planning designed to help students reach these outcomes. The curriculum maps contain components to ensure that instruction focuses students toward college and career readiness. Educators will use this guide and the standards as a roadmap for curriculum and instruction. The sequence of learning is strategically positioned so that necessary foundational skills are spiraled in order to facilitate student mastery of the standards.

Our collective goal is to ensure our students graduate ready for college and career. Being College and Career Ready entails, many aspects of teaching and learning. We want our students to apply their scientific learning in the classroom and beyond. These valuable experiences include students being facilitators of their own learning through problem solving and thinking critically. The Science and Engineering Practices are valuable tools used by students to engage in understanding how scientific knowledge develops. These practices rest on important "processes and proficiencies" with longstanding importance in science education. The science maps contain components to ensure that instruction focuses students toward understanding how science and engineering can contribute to meeting many of the major challenges that confront society today. The maps are centered around five basic components: the Tennessee Academic Standards for Science, Science and Engineering Practices, Disciplinary Core Ideas, Crosscutting Concepts, and Phenomena.

The Tennessee Academic Standards for Science were developed using the National Research Council's 2012 publication, <u>A Framework for K-12 Science Education</u> as their foundation. The framework presents a new model for science instruction that is a stark contrast to what has come to be the norm in science classrooms. Thinking about science had become memorizing concepts and solving mathematical formulae. Practicing science had become prescribed lab situations with predetermined outcomes. The framework proposes a three-dimensional approach to science education that capitalizes on a child's natural curiosity. The Science Framework for K-12 Science Education provides the blueprint for developing the effective science practices. The Framework expresses a vision in science education that requires students to operate at the nexus of three dimensions of learning: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. The Framework identified a small number of disciplinary core ideas that all students should learn with increasing depth and sophistication, from Kindergarten through grade twelve. Key to the vision expressed in the Framework is for students to learn these disciplinary core ideas in the context of science and engineering practices. The importance of combining Science and Engineering Practices, Crosscutting Concepts and Disciplinary Core Ideas is stated in the Framework as follows:

Standards and performance expectations that are aligned to the framework must take into account that students cannot fully understand scientific and engineering ideas without engaging in the practices of inquiry and the discourses by which such ideas are developed and refined. At the same time, they cannot learn or show competence in practices except in the context of specific content. (NRC Framework, 2012, p. 218)

To develop the skills and dispositions to use scientific and engineering practices needed to further their learning and to solve problems, students need to experience instruction in which they use multiple practices in developing a particular core idea and apply each practice in the context of multiple core ideas. We use the term "practices" instead of a term such as "skills" to emphasize that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice. Students in grades K-12 should engage in all eight practices over each grade band. Crosscutting concepts have application across all domains of science. As such, they are a way of linking the different domains of science. Crosscutting concepts have value because they provide students with connections and intellectual tools that are related across the differing areas of disciplinary content and can enrich their application of practices and their understanding of core ideas. There are seven crosscutting concepts that bridge disciplinary boundaries, uniting core ideas throughout the fields of science and engineering. Their purpose is to help students deepen their understanding of the disciplinary core ideas and develop a coherent and scientifically based view of the world.

The map is meant to support effective planning and instruction to rigorous standards. It is not meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected--with the support of their colleagues, coaches, leaders, and other support providers--to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are non-negotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning across the content areas.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
 Asking questions & defining problems Developing & using models 	Physical Science PS 1: Matter & its interactions PS 2: Motion & stability: Forces & interactions PS 3: Energy PS 4: Waves & their applications in	 Patterns Cause & effect
3. Planning & carrying out investigations	technologies for information transfer Life Sciences LS 1: From molecules to organisms:	3. Scale, proportion, & quantity
4. Analyzing & interpreting data	structures & processes LS 2: Ecosystems: Interactions, energy, & dynamics LS 3: Heredity: Inheritance & variation of traits	4. Systems & system models
5. Using mathematics & computational thinking	LS 4: Biological evaluation: Unity & diversity	5. Energy & matter
6. Constructing explanations & designing solutions	Earth & Space Sciences ESS 1: Earth's place in the universe ESS 2: Earth's systems ESS 3: Earth & human activity	6. Structure & function
7. Engaging in argument from evidence	Engineering, Technology, & the Application of Science	7. Stability & change
8. Obtaining, evaluating, & communicating information	ETS 2: Links among engineering, technology, science, & society	

Learning Progression

At the end of the elementary science experience, students can observe and measure phenomena using appropriate tools. They are able to organize objects and ideas into broad concepts first by single properties and later by multiple properties. They can create and interpret graphs and models that explain phenomena. Students can keep notebooks to record sequential observations and identify simple patterns. They are able to design and conduct investigations, analyze results, and communicate the results to others. Students will carry their curiosity, interest and enjoyment of the scientific world view, scientific inquiry, and the scientific enterprise into middle school.

At the end of the middle school science experience, students can discover relationships by making observations and by the systematic gathering of data. They can identify relevant evidence and valid arguments. Their focus has shifted from the general to the specific and from the simple to the complex. They use scientific information to make wise decision related to conservation of the natural world. They recognize that there are both negative and positive implications to new technologies.

As an SCS graduate, former students should be literate in science, understand key science ideas, aware that science and technology are interdependent human enterprises with strengths and limitations, familiar with the natural world and recognizes both its diversity and unity, and able to apply scientific knowledge and ways of thinking for individual and social purposes.

Structure of the Standards

- Grade Level/Course Overview: An overview that describes that specific content and themes for each grade level or high school course.
- Disciplinary Core Idea: Scientific and foundational ideas that permeate all grades and connect common themes that bridge scientific disciplines.
- Standard: Statements of what students can do to demonstrate knowledge of the conceptual understanding. Each performance indicator includes a specific science and engineering practice paired with the content knowledge and skills that students should demonstrate to meet the grade level or high school course standards.

Purpose of Science Curriculum Maps

This map is a guide to help teachers and their support providers (e.g., coaches, leaders) on their path to effective, college and career ready (CCR) aligned instruction and our pursuit of Destination 2025. It is a resource for organizing instruction around the Tennessee Academic Standards for Science, which define what to teach and what students need to learn at each grade level. The map is designed to reinforce the grade/course-specific standards and content (scope) and provides suggested sequencing, pacing, time frames, and aligned resources. Our hope is that by curating and organizing a variety of standards-aligned resources, teachers will be able to spend less time wondering what to teach and searching for quality materials (though they may both select from and/or supplement those included here) and have more time to plan, teach, assess, and reflect with colleagues to continuously improve practice and best meet the needs of their students.

The map is meant to support effective planning and instruction to rigorous standards. It is not meant to replace teacher planning, prescribe pacing or instructional practice. In fact, our goal is not to merely "cover the curriculum," but rather to "uncover" it by developing students' deep understanding of the content and mastery of the standards. Teachers who are knowledgeable about and intentionally align the learning target (standards and objectives), topic, text(s), task, and needs (and assessment) of the learners are best-positioned to make decisions about how to support student learning toward such mastery. Teachers are therefore expected--with the support of their colleagues, coaches, leaders, and other support providers--to exercise their professional judgment aligned to our shared vision of effective instruction, the Teacher Effectiveness Measure (TEM) and related best practices. However, while the framework allows for flexibility and encourages each teacher/teacher team to make it their own, our expectations for student learning are non-negotiable. We must ensure all of our children have access to rigor—high-quality teaching and learning to grade level specific standards, including purposeful support of literacy and language learning across the content areas.

	Physical Science Quarter 3 Curriculum Map Curriculum Map Feedback Survey							
	Quarter 1		Quarter 2	irter 3		Quar	Quarter 4	
Structures and Routine	Unit 1 Matter	Unit 2 Chemical Reactions	Unit 3 Motions and Stability	Unit 4 Energy and Machines	Unit 5 Heat and Electricity	Unit 6 Nuclear Energy	Unit 7 Waves	Unit 8 Electromagnetic Radiation
Week 1	3 Weeks	5 Weeks	9 Weeks	3 Weeks	4 Weeks	2 Weeks	4 Weeks	5 Weeks
			UNI	T 4 Energy and Machines [3	3 weeks]			
				Overarching Question(s	;)			
			How	is energy transferred and co	nserved?			
Unit	Lesso	n Length	Essen	tial Question		<u> </u>	Vocabulary	<u> </u>
Unit 4 Energy 1 week and Machines		 What is the energy and How can you What are so potential energy How can you potential energy 	Energy, system, kinetic energy, potential energy, elastic potential energy, chemical potential energy, gravitational potential energy					
Standard	s and Related Information	Background	Instruc	Instructional Resources				
Information DCI PSCI.PS3: Energy Standards PSCI.PS3.1 Identify and give examples of the various forms of energy (kinetic, gravitational potential, elastic potential) and solve mathematical problems regarding the work-energy theorem and power. Explanations In 6.PS3 students were introduced to the various types of energy and mechanisms for their transformations. Students should now be able to quantify the total energy of a system as well as quantify each different type of energy in a system. Energy is an abstract concept that does not have a			Learning Outcomes Phenomenon Use the Wind General and/or show a clip from videos. A wind generator transpondent energy from the wind spinning the turbines how the wind speed of generator relates to the the generator. Answer the wind generator will some of the wind's er energy) has been cor spinning the turbines	ators photo on page 105 m one of the following asforms some of the kinetic 's motion into energy for Ask students to predict directly behind a wind ne wind speed in front of rr. The wind speed behind build be slower because nergy of motion (kinetic hverted to energy for	Engage Khan Academ energy <u>https://www</u> Bozeman Sci Energy <u>https://www</u> Bozeman Sci Energy <u>https:</u> Quick Demo Quick Demo Gravitational resources rur Video Lab Bo resources rur Explore MiniLab Inter	ny Introduction to //www.youtube.co ny Work and ene w.youtube.com/w ence Definitions //www.youtube.co Kinetic Energy Gravitational F Potential Energy n time 2:26 mins puncing Balls An n time 3:56 mins pret Data from a	o work and com/watch?v=2WS1s(ergy (part vatch?v=3mier94pbnL of com/watch?v=DGVtHg v TE pg. 116 Potential Energy TE p v Animation found in Chap imation found in Chap	<u>S9fhOk</u> <u>J</u> 5xmb9M og. 118 Chapter 4 Section 2 ter 4 Section 2

Physical Science Quarter 3

physical form. It is a substance-like quantity		
that is recognized to be conserved as a	Questions to Ask	
system change. Calculations present an	• Why is a source energy a key element of every	Evolain
opportunity to observe that potential	civilization?	<u>Explain</u> Solve for Kinetic Energy p. 116
energies are due to the positions of objects	• Where does the energy come from that causes	Solve for Cravitational Detential Energy p. 110
within a field, while kinetic energy is based	the wind turbines to rotate?	Solve for Gravitational Potential Energy p. 119
on an object's mass and motion. Students	• How is a modern wind turbine like and different	Elek evete
can evaluate the total energy of a system by	from a windmill that provides energy to grind	Elaborate
imagining that there are different types of	grain or to pump water?	Post Reading: Cooperative Project TE pg. 118
energy storage accounts, just as money can	Why does electrical energy fill a major part of	Discussion: Riding an Elevator TE pg. 118
be stored in different accounts. Energy can	the energy demand of modern cities?	
be transferred into or out of any of these		Evaluate
accounts. Three different processes can	Climbing Wind Turbines for a Living That's	Section 2 Review: 20-25 pg. 119
account for all energy changes: working,	Amazing	Assessment Process TE pg. 119
heating, and radiating. In energy storage	https://www.youtube.com/watch?v=xUjCD-fFU9k	
due to field effects, such as gravitational or		Textbook Resources
electrostatic fields, the field itself stores the	Big Wind Fully Charged 15:59 mins	Glencoe Physical Science, Chapter 4 Section 2: Describing Energy
potential energy and not the object in the	https://www.voutube.com/watch?v=1Rd55DuJPx	pgs. 114-119
field. Students should understand that a	4	
given task will require a certain minimum	-	Performance Tasks
amount of energy. In accordance with the	How do Wind Turbines work?	Design Your Own Lab Swinging Energy p.128 - 129 The handout for
work-energy theorem this would be	https://www.voutube.com/watch?v=gSWm_nprfg	this lab is found on the my.mheducation.com site for Chapter 4. Click
described as work done on the system	F	on the link for Lab 2. There are two versions.
Power incorporates a rate element into this	=	
discussion		Additional Resources
		Teach Engineering Curricular Unit: Simple Machines
Misconcentions		https://www.teachengineering.org/curricularunits/view/cub_simp_machi
misconceptions		nes curricularunit
Science and Engineering Practices		Rube Goldberg Teaching Resources
Develop and Use Models		https://www.rubegoldberg.com/education/teaching-resources/
Students can create models for the		The Physics Classroom Work, Energy, and Power
interactions of two congrate systems		https://www.physicsclassroom.com/class/energy
Studente con test the predictive chilities of		Reasoning's and solutions of Newton's laws
their models in a real world softing and		http://www3.ncc.edu/faculty/ens/schoenf/phy101/pdf/Ch4_CQ.PDF
mele comparizone of two models of the		
same process or system.		
Crossoutting Concent		
Energy and Mottor		
Energy and matter		

Students demonstrate and explain conservation of mass and energy in systems, including systems with inputs and outputs.	

	Physical Science Quarter 3 Curriculum Map								
			Cul	rriculum Map Feedba	ick Survey				
	Quarter 1		Quarter 2		Quarter 3		Qua	rter 4	
Structures and Routine	res Unit 1 Unit 2 Matter Reactions		Unit 3 Motions and Stability	Unit 4 Energy and Machines	Unit 5 Heat and Electricity	Unit 6 Nuclear Energy	Unit 7 Waves	Unit 8 Electromagnetic Radiation	
Week 1	3 Weeks	5 Weeks	9 Weeks	3 Weeks	4 Weeks	2 Weeks	4 Weeks	5 Weeks	
			UNI	T 4 Energy and Machine	es [3 weeks]				
				Overarching Question	on(s)				
			How	is energy transferred and	I conserved?				
Unit	Lesso	n Length	Essentia	al Question		N	ocabulary		
Unit 4 Energy and Machines	1 w	veeks	 What is work? How can work be calculated when force and motion are parallel to each other? How do machines make doing work easier? What are mechanical advantage and efficiency? 		Work, Joule, applied force, machine, simple machine, compound mach efficiency, mechanical advantage,				
Standards and Related Background Information			Instructional Focus		Instructional Resources				

<u>DCI</u>	Learning Outcomes	Curricular Resources
PSCI.PS3: Energy	 Experiment with selected simple 	
	machines to discover the	Engage
<u>Standard</u>	relationship between force and	Phet Interactive Simulations The Ramp
PSCI.PS3.3 Design, build, and refine a	distance.	https://phet.colorado.edu/en/simulation/the-ramp
device within design constraints that has a	 Solve problems related to force, 	Demonstration of simple machines
series of simple machines to transfer energy	work, and power.	http://www.cosi.org/downloads/activities/simplemachines/sm1.html
and/or do mechanical work.	 Identify various types of simple 	Bozeman Science Energy, Work, and Power
	machines.	http://www.bozemanscience.com/energy-work-power
Explanation	 Recognize the simple machines 	Khan Academy Introduction to work and
Students design, build, and refine a device	found in a compound machine.	energy https://www.youtube.com/watch?v=2WS1sG9fhOk
within design constraints. The device could	 Investigate the factors that 	Khan Academy Work and energy (part
be a Rube Goldberg machine with the	determine the speed of an object	2) <u>https://www.youtube.com/watch?v=3mier94pbnU</u>
following as examples of constraints:	rolling down a ramp.	Quick Demo Calculate Work pg. 108
Require that their Rube Goldberg machine	 Solve application problems related 	
contain a certain number of steps; Ensure it	to mechanical advantage and the	Explore
carries out a specific task; and Make certain	efficiency of simple machines, given	Energy of a Bouncing Ball Lab-
it remains within a strict time frame.	appropriate equations (MA=FO/FI	http://galileo.phys.virginia.edu/education/outreach/8thgradesol/EnergyBall.
	and Eff=WO/WI).	<u>htm</u>
Students develop a plan for the device in	 Design and construct a device with 	Conservation of Energy Labs – Dropping the Ball
which they do the following: Identify what	design constraints for example a	https://www.arborsci.com/cool/lab-9-7-mechanics-chapter-9-dropping-the-
scientific principles provide the basis for the	Rube Goldberg machine.	ball/
energy conversion design; Identify the forms		Vernier Physical Science – Simple Machines #s 20, 21, 22 First Class
of energy that will be converted from one	<u>Phenomenon</u>	Levers, Pulleys, and An Inclined Plane
form to another in the designed system;	View the phenomenon videos and choose	Vernier Physics Explorations and Projects - #16 Rube Goldberg Machine
Identify losses of energy by the design	which ones to show to students.	
system to the surrounding environment;	Amazing Rube Goldberg Machines	<u>Explain</u>
Describe the scientific rationale for choices	https://thewonderofscience.com/phenomeno	
of materials and structure of the device,	n/2018/7/8/amazing-rube-goldberg-machines	<u>Elaborate</u>
including how student-generated evidence	Steve Price (aka "Sprice") Shows Off His	
influenced the design; and Describe that this	Complex Rube Goldberg Machine -	<u>Evaluate</u>
device is an example of how the application	America's Got Talent	Hands-on Activity: Design Your Own Rube Goldberg Machine Timeframe:
of scientific knowledge and engineering	https://www.youtube.com/watch?v=7UdzAaw	2 – 8 class periods
design can increase benefits for modern	<u>-H0o</u>	Engineer and cartoonist Rube Goldberg is famous for his crazy machines
civilization while decreasing costs and risk.	The Lemonade Machine	that accomplish everyday tasks in overly complicated ways. Students use
Emphasis is on both qualitative and	https://www.youtube.com/watch?v=Av07Qiq	their new understanding of types of simple machines to design and build
quantitative evaluations of devices.	<u>msoA</u>	their own Rube Goldberg machines that perform simple tasks in no less
		than 10 steps.
<u>Misconceptions</u>		https://www.teachengineering.org/activities/view/rube_goldberg_machine

 Increasing Work – Students might 	Simple machine homework:
think that a machine decreases the	http://www.biologycorner.com/physics/mechanics/elab_simple_machines.h
amount of work necessary to	tml
complete a task. This is false. The	_
output work done by a machine	Textbook Resources
never exceeds the work input to	Glencoe Physical Science Chapter 4, Section 1: Work and Energy pgs.
the machine. However, a machine	106-112
can make work easier in three	
ways. It can change the size of a	Performance Tasks
force, change the distance over	Lab: Mechanical Advantage and Efficiency TE/SE pg. 113
which the force acts, and change	5 7 15
the direction of a force.	
 Efficiency and Mechanical 	Additional Resources
Advantage – Students often	Teach Engineering Curricular Unit: Simple Machines
confuse efficiency and mechanical	https://www.teachengineering.org/curricularunits/view/cub_simp_machines
advantage. Both are output to input	curricularunit
ratios. Efficiency is a ratio of output	Rube Goldberg Teaching Resources
work to input work and mechanical	https://www.rubegoldberg.com/education/teaching-resources/
advantage is a ratio of output force	The Physics Classroom Work, Energy, and Power
to input force. Efficiency of a	https://www.physicsclassroom.com/class/energy
machine must always be less than	Reasoning's and solutions of Newton's laws
1 and mechanical advantage of a	http://www3.ncc.edu/faculty/ens/schoenf/phy101/pdf/Ch4_CQ.PDF
machine can be less than 1, equal	
to 1, or greater than 1.	
Energy Conversions – Students	
may think that energy can be	
converted to things other than	
energy or that other things can be	
converted into energy.	
Science and Engineering Practice	
Using mathematics and computational	
thinking	
Students can create computational or	
mathematical models for interactions in the	
natural world using unit equivalencies.	
Crosscutting Concept	
Energy and Matter	

Students demonstrate and explain conservation of mass and energy in systems, including systems with inputs and outputs.	

	Physical Science Quarter 3 Curriculum Map								
	Curriculum Map Feedback Survey								
	Quarter 1			Quarter 2	(Quarter 3		Qua	rter 4
Structures	Unit 1	Unit	t 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8
and	Matter	Cherr	nical	Motions and	Energy and Machines	Heat and	Nuclear	Waves	Electromagnetic
Routine		React	ions	Stability		Electricity	Energy		Radiation
Week 1	3 Weeks	5 We	eks	9 Weeks	3 Weeks	4 Weeks	2 Weeks	4 Weeks	5 Weeks
				UN	IIT 4 Energy and Machine	s [3weeks]			
					Overarching Question	n(s)			
				How	is energy transferred and	conserved?			
Unit	Lesson Ler	ngth		Essential Q	uestion	Vocabulary			
	1		•	• What is the law of conservation of energy?		law of conservation of energy, mechanical energy, power, horsepower,			
Unit 4			•	What is mechanical energy?		watts			
Energy			•	Why is mechanical energy not always					
and	I WEEK			conserved?	0, ,				
Machines			•	How are power and	energy related?				
					onorgy rolatou:				
Standards a	nd Related Back	ground	Instructional Focus			Instructional Resources			
	Information			manuclional	11 0003				

Dâl		
	Learning Outcomes	Curricular Resources
PSCI.PS3: Energy	 Understand that energy cannot be created 	_
	nor destroyed.	Engage
Standard(s)		Phet Interactive Simulations The Ramp
PSCI.PS3.4 Collect data and	Phenomenon	https://phet.colorado.edu/en/simulation/the-ramp
present your findings regarding the	View the phenomenon videos and choose which	Demonstration of simple machines
law of conservation of energy and	ones to show to students.	http://www.cosi.org/downloads/activities/simplemachines/sm1.html
the efficiency, mechanical	What does a roller coaster have to do with energy	Bozeman Science Energy, Work, and Power
advantage, and power of the refined	and physics?	http://www.bozemanscience.com/energy-work-power
device.	Law of Conservation of Energy (Roller Coaster	
	Demo) 2:45 mins	Explore
PSCI.PS3. 5 Investigate the	https://www.youtube.com/watch?v=LrRdKmjhOgw	Energy of a Bouncing Ball Lab-
relationships among kinetic,	How Roller Coasters Work Article	http://galileo.phys.virginia.edu/education/outreach/8thgradesol/EnergyBall.
potential, and total energy within a	https://science.howstuffworks.com/engineering/struct	htm
closed system (the law of	ural/roller-coaster3.htm	Conservation of Energy Labs – Dropping the Ball
conservation of energy).	PolerCoaster POV - Nolimits Coaster 2 Animation	https://www.arborsci.com/cool/lab-9-7-mechanics-chapter-9-dropping-the-
	3:44 mins	ball/
Explanation	Warning: Animation can cause motion sickness.	Vernier Physical Science – Simple Machines #s 20, 21, 22 First Class
An understanding of conservation of	https://www.youtube.com/watch?v=2GVmvtVA5p8	Levers, Pulleys, and An Inclined Plane
energy should lead to conversations	Twisted Colossus - POV animation 2:43 mins	Vernier Physics Explorations and Projects - #16 Rube Goldberg Machine
about the efficiency of a device. A	https://www.youtube.com/watch?v=EZo67kUcJXM	
well-designed device should utilize		Explain
as much of the available energy as		
possible for the desired task. Other		Elaborate
energy will be converted to forms.		
such as heat and noise, which may		Evaluate
not be immediately useful based on		Hands-on Activity: Design Your Own Rube Goldberg Machine Timeframe:
the intended use for the device.		2 – 8 class periods
Students can investigate kinetic.		Engineer and cartoonist Rube Goldberg is famous for his crazy machines
potential, and total energy within a		that accomplish everyday tasks in overly complicated ways. Students use
closed system using various		their new understanding of types of simple machines to design and build
phenomena for example the		their own Rube Goldberg machines that perform simple tasks in no less
Dropping the Ball and Pendulum		than 10 stens
Swing		https://www.teachengineering.org/activities/view/rube_goldberg_machine
		Simple machine homework:
Misconceptions		http://www.biologycorner.com/physics/mechanics/elab_simple_machines.h
Students might think that		tml
energy can be converted		
into things other than		Textbook Resources
operate or that other things		
energy or that other things		

can be converted into	
energy. Energy can only be	Performance Tasks
converted into other forms	Design Your Own Lab Swinging Energy p.128 - 129 The handout for this
of energy, and other things	lab is found on the my.mheducation.com site for Chapter 4. Click on the
cannot be converted into	link for Lab 2. There are two versions.
energy.	
 Some students might not 	Additional Resources
realize that when the bob	Teach Engineering Curricular Unit: Simple Machines
of a pendulum reaches its	https://www.teachengineering.org/curricularunits/view/cub_simp_machines
maximum height, it	curricularunit
momentarily stops, and	Rube Goldberg Teaching Resources
when it is at its lowest part	https://www.rubegoldberg.com/education/teaching-resources/
of its swing, its velocity is	The Physics Classroom Work, Energy, and Power
highest.	https://www.physicsclassroom.com/class/energy
	Reasoning's and solutions of Newton's laws
Science and Engineering Practice	http://www3.ncc.edu/faculty/ens/schoenf/phy101/pdf/Ch4_CQ.PDF
Planning and Carrying out controlled	
investigations	
Students plan and perform	
investigations to aid in the	
development of a predictive model	
for interacting variables considering	
the quantity of data with respect to	
experimental uncertainty and select	
methods for collection and analysis	
of data	
Crosscutting Concept	
Energy and Matter	
Students demonstrate and explain	
conservation of mass and energy in	
systems including systems with	
inputs and outputs	

	Physical Science Quarter 3 Curriculum Map								
	Curriculum Map Feedback Survey								
	Quarter 1		Quarter 2	(Quarter 3		Qua	rter 4	
Structures	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	
and	Matter	Chemical	Motions and	Energy and Machines	Heat and	Nuclear	Waves	Electromagnetic	
Routine		Reactions	Stability		Electricity	Energy		Radiation	
Week 1	3 Weeks	5 Weeks	9 Weeks	3 Weeks	4 Weeks	2 Weeks	4 Weeks	5 Weeks	
			UNIT 1 WEE	K 1 [5 days]: STRUCTUR	ES AND ROUTI	NES			
	This week i	s for teachers to e	stablish routines and p	procedures during the first	week of school.	No content is to be	e taught during this we	eek.	
				UNIT 4 Matter [week	(S]				
				Overarching Questior	n(s)				
		What	causes matter to char	nge states? How does gas	s behave under different conditions?				
Unit	Lesson Le	ngth	Essential Q	al Question			Vocabulary		
Standards an	nd Related Bacl	kground	Instructional	Eocus	s Instructional Resources				
I	nformation								

Physical Science Quarter 3 Curriculum Map Curriculum Map Feedback Survey								
Quarter 1			Quarter 2	Quarter 3			Quarter 4	
Structures	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8
and	Matter	Chemical	Motions and	Energy and Machines	Heat and	Nuclear	Waves	Electromagnetic
Routine		Reactions	Stability		Electricity	Energy		Radiation

Physical Science Quarter 3

Week 1	3 Weeks	5 Week	s 9 Weeks	3 Weeks	4 Weeks	2 Weeks	4 Weeks	5 Weeks		
	UNIT 1 WEEK 1 [5 days]: STRUCTURES AND ROUTINES									
	This week is for teachers to establish routines and procedures during the first week of school. No content is to be taught during this week.									
	UNIT 4 Matter [weeks]									
				Overarching Question	n(s)					
			What causes matter to chan	ge states? How does gas	s behave under o	different conditions	s?			
Unit	Lesson Le	ength	Essential Qu	lestion	Vocabulary					
Standards and Related Background		ckground	Instructional Focus		Instructional Resources					

Physical Science Quarter 3 Curriculum Map									
	Curriculum Map Feedback Survey								
Quarter 1			Quarter 2	Quarter 3			Quarter 4		
Structures	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	
and	Matter	Chemical	Motions and	Energy and Machines	Heat and	Nuclear	Waves	Electromagnetic	
Routine		Reactions	Stability		Electricity	Energy		Radiation	
Week 1	3 Weeks	5 Weeks	9 Weeks	3 Weeks	4 Weeks	2 Weeks	4 Weeks	5 Weeks	
UNIT 1 WEEK 1 [5 days]: STRUCTURES AND ROUTINES									
This week is for teachers to establish routines and procedures during the first week of school. No content is to be taught during this week.									
UNIT 4 Matter [weeks]									
Overarching Question(s)									
What causes matter to change states? How does gas behave under different conditions?									
Unit	Unit Lesson Length		Essential Q	uestion	Voca		/ocabulary	cabulary	
Standards and Related Background Information		Instructional	l Focus	Instructional Resources		tional Resources			

Physical Science Quarter 3

Curriculum and Instruction- Science							
RESOURCE TOOLKIT Quarter 3 Physical Science							
Textbook	DCIs and Standards	Videos	Additional Resources				
<u>Textbook</u>	DCI	Videos <u>Khan Academy</u> <u>Illuminations (NCTM)</u> <u>Discovery Education</u> <u>The Futures Channel</u> <u>The Teaching Channel</u> <u>Teachertube.com</u>	ACT & SAT Marcon ACT Information & Resources ACT College & Career Readiness Mathematics Standards SAT Connections SAT Practice from Khan Academy				